The Effects of Thickness on Biomechanical Behavior of Articular Cartilage: a Finite Element Analysis
نویسندگان
چکیده
It is important to study joint contact mechanics in order to understand the human joint function and degeneration. In previous studies, the cartilage behavior was investigated using computational method assuming the cartilage to be flat and an ideal thickness. But, this assumption may not appropriate because the joint is naturally curved and the cartilage thickness varies across the articular cartilage. In this study, finite element (FE) analysis was performed to investigate the effect of cartilage thickness on contact pressure and pore pressure of cartilage in indentation test. An axisymmetric FE model of cartilage was developed according to the thickness and radius measured in the experiment. The cartilage was modeled as biphasic material to describe the properties of cartilage. Based on the result, the lowest cartilage thickness of 0.3 mm thickness generated 48% higher in contact pressure and 59% higher in pore pressure, compared to the highest thickness cartilage. This could indicate that the cartilage thickness does affect the contact pressure and pore pressure.
منابع مشابه
Simulating the growth of articular cartilage explants in a permeation bioreactor to aid in experimental protocol design.
Recently a cartilage growth finite element model (CGFEM) was developed to solve nonhomogeneous and time-dependent growth boundary-value problems (Davol et al., 2008, "A Nonlinear Finite Element Model of Cartilage Growth," Biomech. Model. Mechanobiol., 7, pp. 295-307). The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens ...
متن کاملAnalysis of Thin-Walled Steel Sections Filled with Concrete Using Non-Linear Finite Element Method
Being economical and performing well under cyclic loads, steel sections filled with concrete have been widely used in structural buildings. Extensive studies and experiments have been conducted to investigate the influence of different parameters and loadings on the behavior of these structural components. Based on the data available from previous experiments and studies, this paper discusses t...
متن کاملAnalysis of Thin-Walled Steel Sections Filled with Concrete Using Non-Linear Finite Element Method
Being economical and performing well under cyclic loads, steel sections filled with concrete have been widely used in structural buildings. Extensive studies and experiments have been conducted to investigate the influence of different parameters and loadings on the behavior of these structural components. Based on the data available from previous experiments and studies, this paper discusses t...
متن کاملInvestigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
Numerical models represent a powerful tool for investigating the biomechanical behavior of articular cartilages, in particular in the case of complex conformation of anatomical site. In the literature, there are complex non-linear-multiphase models for investigating the mechanical response of articular cartilages, but seldom implemented for the analysis of high organized structure such as the f...
متن کاملA study on behavior of block pavement using 3D finite element method
Three dimensioned finite element analysis were conducted on concrete block paving. In order to verify the calculated results, an experimental case study was analyzed. Good agreement was observed between the measured and the calculated results. Based on the finite element analysis results and available failure models, comprehensive design charts were developed for port and industrial pavement wh...
متن کامل